Matrix metalloproteinase-2 and -9 differentially regulate smooth muscle cell migration and cell-mediated collagen organization.

نویسندگان

  • Chad Johnson
  • Zorina S Galis
چکیده

OBJECTIVE Smooth muscle cells (SMCs) produce both matrix metalloproteinase (MMP)-2 and MMP-9, enzymes with similar in vitro matrix degrading abilities. We compared the specific contributions of these enzymes to SMC-matrix interactions in vitro and in vivo. METHODS AND RESULTS Using genetic models of deficiency, we investigated MMP-2 and MMP-9 roles in SMC migration in vivo in the formation of intimal hyperplasia and in vitro. In addition, we investigated potential effects of MMP-2 and MMP-9 genetic deficiency on compaction and assembly of collagen by SMCs. CONCLUSIONS MMP-2 and MMP-9 genetic deficiency decreased by 81% and 65%, respectively (P<0.01), SMC invasion in vitro and decreased formation of intimal hyperplasia in vivo (P<0.01). However, we found that MMP-9, but not MMP-2, was necessary for organization of collagen by SMCs. Likewise, we found that MMP-9 deficiency resulted in a 50% reduction of SMC attachment to gelatin (P<0.01), indicating that SMCs may use MMP-9 as a bridge between the cell surface and matrix. Furthermore, we found that the hyaluronan receptor, CD44, assists in attachment and utilization of MMP-9 by SMCs. Understanding the specific roles of these MMPs, generally thought to be similar, could improve the design of therapeutic interventions aimed at controlling vascular remodeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tyrosine kinase activity of discoidin domain receptor 1 is necessary for smooth muscle cell migration and matrix metalloproteinase expression.

Smooth muscle cell (SMC) interactions with collagen mediate cell migration during the pathogenesis of atherosclerosis and restenosis. Discoidin domain receptors (DDRs) have been identified as novel collagen receptors. We used aortic SMCs from wild-type and DDR1(-/-) mice to evaluate the function of the DDR1 in regulating migration. DDR1(-/-) SMCs exhibited impaired attachment to and migration t...

متن کامل

Extracellular matrix regulates human airway smooth muscle cell migration.

Extracellular matrix proteins regulate the survival and proliferation of smooth muscle cells. Their effect on airway smooth muscle cell migration is not known. Their role in leukotriene-primed (0.1 microM leukotriene E4) chemotaxis of cultured human airway smooth muscle cells towards platelet-derived growth factor BB (1 ng.mL(-1)) was investigated. Migration of cells was greater on membranes co...

متن کامل

Matrix metalloproteinase-9 overexpression enhances vascular smooth muscle cell migration and alters remodeling in the injured rat carotid artery.

Matrix metalloproteinase-9 (MMP-9) has been implicated in the pathogenesis of atherosclerosis as well as intimal hyperplasia after vascular injury. We used Fischer rat smooth muscle cells (SMCs) overexpressing MMP-9 to determine the role of MMP-9 in migration and proliferation as well as in vessel remodeling after balloon denudation. Fischer rat SMCs were stably transfected with a cDNA for rat ...

متن کامل

Function of the plasminogen/plasmin and matrix metalloproteinase systems after vascular injury in mice with targeted inactivation of fibrinolytic system genes.

The matrix metalloproteinase (MMP) system, which may be activated via the plasminogen (Plg)/plasmin system, is claimed to play a role in matrix degradation and smooth muscle cell migration. To test the role of both systems, expression of fibrinolytic and gelatinolytic activity was quantified after vascular injury in mice with targeted inactivation of tissue-type Plg activator (tPA-/-), urokinas...

متن کامل

Matrix metalloproteinase and alphavbeta3 integrin-dependent vascular smooth muscle cell invasion through a type I collagen lattice.

Smooth muscle cell (SMC) migration from the tunica media to the intima is a key event in the development of atherosclerotic lesions and in restenosis after angioplasty. SMCs require not only migratory but also degradative abilities that enable them to migrate through extracellular matrix proteins, which surround and embed these cells. We used a collagen type I lattice as a coating on top of a p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 24 1  شماره 

صفحات  -

تاریخ انتشار 2004